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Summary

This report presents a parametric study of vibratory rotor hub loads in a nonrotating

system. The study is based on a CAMRAD/JA model constructed for the "growth"

version of the U.S. Army's UH-60A Black Hawk helicopter (GBH). The GBH is a Math-

scaled wind tunnel rotor model with high blade twist (-16°). The theoretical hub load

predictions are validated by correlation with available measured data. Effects of various

blade aeroelastic design changes on the harmonic nonrotating frame hub loads at both

low and high forward flight speeds are investigated. The study aims to illustrate some

of the physical mechanisms for change in the harmonic rotor hub loads due to blade

design variations.

Nomenclature

ELz

EIx_

F:,F_,F:

GJ

M:,M:,M:

Pk, qk

R

7"

#

(')

flapwise bending stiffness, lbf-ft 2

chordwise bending stiffness, lbf-ft 2

4P harmonic hub forces in nonrotating frame, Ibs

torsional stiffness, Ibf - ft 2

4P harmonic hub moments in nonrotating frame, ft-lbs

generalized coordinates of blade torsion and bending

rotor radius, ft

blade radial coordinate, nondimensionalized on R

advance ratio

rotor azimuth

rotor rotational speed, rad/sec

derivative with respect to time

Introduction

Rotorcraft vibration reduction is a challenge that is receiving the continuous atten-

tion of rotorcraft researchers, Refs [1-15]. Among various efforts to reduce the vibration



(absorbers,isolators, active blade control, etc.), a blade designfor low vibration is an

especially attractive approach sinceit dealswith the problem in early design stages

which is cost effective.

A rotorcraft is a complicateddynamicsystem. The flexible rotor bladesencounter

harmonic variations of the relative wind during their rotation in forward flight. Rotor

aeroelasticresponsegeneratesvibratory hub loadswhich passto the nonrotating frame

in harmonics that are a multiple of the numberof rotor blades,given that there is no

dissimilarity betweenblades. Among all other vibration excitation sources(tail rotor,

impingement of rotor downwashon airframe, transmission,etc.), theseharmonic hub

loads contribute most significantly to the vehiclevibration. An understandingof the

variation of the vibratory hub loads with designchangeis valuableas a guide for the

designof low vibration rotorcraft.

There are works on the topic of sensitivity of vibratory hub loads to variations

in blade parameters, Refs. [16-18]. Thesestudies haveenriched the designguideline

for low vibration blades. In this report, a comprehensiverotorcraft analysisprogram

(CAMRAD/JA), Ref. [19],is appliedto investigateaeroelastictailoring of an advanced

rotor blade (GBH). This baselinebladewasdesignedwith an advancedaerodynamic

approach. It is both tapered and twisted. The blade twist is ashigh as -16 ° which is

much higher than conventionalblades(-8 °, in general).The bladealso has three dif-

ferent setsof airfoils distributed alongthe spanfor improvedaerodynamicperformance.

It is intended that a parametric study of harmonichub loadscanprovide someinsight

into the dynamic behavior of this aerodynamicallyadvancedrotor. The investigation

is made concerningthe effectof blade twist, center-of-gravityoffset, aerodynamiccen-

ter offset from the elastic axis, massand stiffnessvariation. The influence of altering

designparameterson harmonic hub loadsis investigatedin both low and high speed

flight sincetheseare two high vibration regions. Where measureddata are available,

analytical resultsare comparedto verify the theoretical predictions.
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Wind Tunnel Model Rotor Description

The baseline model rotor investigated in this study is a 1/6-size, Mach-scaled rep-

resentation of the "growth" version of the U.S. Army's UH-60A Black Hawk helicopter

rotor, Ref. [12]. It is a four-bladed articulated rotor with coincident flap and lead-lag

hinges. There is a pitch-flap coupling ratio measured as 0.5.

The baseline rotor blades are tapered with a -16 ° linear twist, Fig. 1. The blades

use the RC(4)-10, RC(3)-10, and RC(3)-08 airfoils, Refs. [20-21]. The RC(3)-10 and

RC(3)-08 are utilized to improve airfoil performance under compressibility effect and

the RC(4)-10 for airfoil stall behavior. The chordwise center-of-gravity, aerodynamic

center, and elastic axis were coincident and located at the blade quarter-chord. The

detailed blade mass and stiffness properties are listed in Ref. [12].

Analytical Rotor Modeling

A formulation of the rotor hub loads problem should address three essential as-

pects (i.e., elastically deformed rotor blades, airloads exciting the blade dynamics and

influence of blade shed and trailing vorticity on the airloads). The system equations

thus formed are, in general, nonlinear and with periodic time-varying coefficients in

forward flight. These system equations can be solved with various integration schemes,

or through harmonic balance with rotor rotational speed as the fundamental harmonic,

or by a periodic shooting method. The solution attained is associated with a specific set

of rotor control pitch. For a given flight condition, the blade pitch setting is adjusted

until the given flight condition is satisfied which is conventionally called the vehicle trim

process.

Rotor-fuselage interaction is another important issue for the vibratory load predic-

tion. But, this study is based on a wind tunnel rotor model with a fixed rotor hub. The

model constructed from CAMRAD/JA is for an isolated rotor only.

Blade Dynamics

The structural model of the rotor blade for CAMRAD/JA is based on the engi-
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Table 1: Natural frequencies (1/rev) of coupled flap-lag modes

II Modes II 1st I 2nd ] 3rd 14th [5th II
calculated 0.312 1.045 2.890 5.439 6.695

measured 2.855 5.339 6.481

neering beam theory which assumes that the plane normal to the elastic axis remains

a plane, Ref. [19]. This is normally well satisfied for an isotropic rotor blade with

a high aspect ratio. The structural model of CAMRAD/JA includes only the lowest

order terms. Nonlinear effects are accounted for in the inertial and aerodynamic forces.

CAMRAD/JA solves for the blade dynamic response in the modal domain. The blade

is assumed to deform in both flapwise and chordwise directions. The flap and lead-lag

of the blade motions are coupled in the modal calculation. The blade torsion modes are

solved independently. The equations of motion for bending and torsion are, however,

coupled in both airloads and inertial loads analysis.

qk qk qk

pk j (1)

where qk and Pk are the generalized coordinates for blade bending and torsion, respec-

tively. The F are generalized non-aerodynamic forces, and Fa_ and Ma_ are generalized

aerodynamic forces.

The calculated blade natural frequencies at a typical collective pitch (6 °) in the

analysis are presented in Table 1. It is customary in rotorcraft dynamics to use the

1/rev (or 1_) to present blade frequencies. The rotor rotational speed is 69.32 rad/sec

(662 rpm) for this study. There are five coupled flap-lag modes. The first mode is for

rigid lag. The second mode is rigid flap. The third and fourth are elastic flap dominated,

and the fifth is mainly of elastic lag motion.

Up to five coupled flap-lag modes are retained for blade dynamic response analysis.

These modes cover a frequency range from 0.3 to 6.70/rev. The calculated elastic

mode (3rd to 5th) frequencies are compared with experimentally measured values in

Table 1. They are in close agreement. Since the following higher bending mode has a
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natural frequency of 9.15/rev, the five coupled flap-lag modes used here are believed

to be sufficient for 4P vibratory loads analysis. One elastic torsion mode is used that

has a frequency of 4.924/rev. The rigid pitch motion due to control link flexibility is

also included. The truncation of the torsional modes are justified as the frequency of

the immediate next higher torsional mode is at 14.37/rev. The validation of the mode

choice is presented in later section of the paper.

Rotor Aerodynamics

In forward flight, a rotor blade encounters 1/rev variation in velocity tangential to

its rotational plane. This comes together with highly nonuniform and rapid variation

of induced flow normal to the blade due to rotor vortex wake. They are responsible for

harmonic airloads, the excitation forces for rotor vibration. Dynamic stall of the rotor

blade during high speed forward flight or maneuvering of helicopters is another source

of vibratory airload. The dynamic stall, however, is not modeled in this study since it

is not a concern of all the cases investigated.

Therefore, the rotor vortex wake is a primary modeling issue for the harmonic ro-

tor hub load calculation. CAMRAD/JA calculates rotor airloads using blade element

theory, Ref. [19]. The analysis of airfoil two-dimensional aerodynamic characteristics

is modified to account for the effects of reverse flow, yawed flow, and blade tip flow.

The rotor three-dimensional nonuniform induced inflow is calculated using a vortex

wake model. Both prescribed and free (distorted) wakes have been investigated. CAM-

RAD/JA models the wake as near wake, rolling up wake, and far wake. The near wake

includes both trailed and shed vorticity. The rolling up wake describes rolling up pro-

cess of the trailing vorticity. The details of the roll-up process, such as the starting

location of the roll-up, the strength of the tip vortex, and the vortex core radius, are

modeled, not calculated. The far wake models the rolled-up tip vortex. The GBH rotor

blades have a high negative twist (-16 degrees). This results in negative loading at the

advancing blade tip. Therefore, a model with double circulation peaks is employed by

CAMRAD/JA to allow proper modeling of the negative tip loading.
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Trim Solution

There are two tasks involved in the trim solution for the harmonic rotor hub loads

calculation. First, the blade pitch control required for a specified flight condition is

calculated. Then, a periodic rotor response is solved for the control applied. It is, in

fact, an iterative process where both the control satisfying the flight state and periodicity

of rotor response associated with the control are converged.

The blade pitch control applied to achieve the specified flight condition is computed

with the Newton-Raphson method. For the GBH rotor test case, the wind tunnel trim

is utilized with rotor thrust, rotor drag, and the tip-path-plane orientation as the trim

target. Thus, the corresponding trim variables are rotor collective pitch, longitudinal

and lateral cyclic pitch, and rotor shaft angle. The shaft angle is added as a trim

variable for consideration of forward flight influence.

The periodic motion for the applied blade pitch control is calculated using the har-

monic balance method. The integration of the rotor equations of motion advances

around the rotor azimuth, calculating the forcing function in the time-domain and then

updating the harmonics of the motion at each time step. The harmonic rotor hub loads

are obtained when both rotor control and periodicity of rotor motion are converged.

Validation of the Analytical Model

The first results are attained for 4P vertical shear of the baseline GBH rotor model.

The harmonic vertical shear are calculated for a thrust solidity ratio of Cr/cr = 0.058

at various advance ratios. The rotor is trimmed such that there is no first harmonic

flapping with respect to the shaft. With a prescribed wake model, the variation of the

4P vertical shear with advance ratio follows the trend of measured data, Fig. 2. They

both show the peaks at both high and low flight speed. The 4P vertical shear between

the predicted and wind tunnel measured data are fairly well correlated. The 4P roll and

pitch moments at fixed system (21 inches below the rotor hub) have also been compared

to the measured data, Figs. 3-4. There are correlations between the predicted and the

measured. The predicted trends agree well with the measured data. Some discrepancy
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occursat low speed(tt = 0.10) with the prescribed wake model. A distorted free wake

provides improvement, Fig. 5. The free wake model improves the prediction at low

forward flight speed in its ability to model the highly-distorted rotor wake at the low

speed. It does, however, often present a solution convergence problem. It has also a

larger error at the cruise speed (around # = 0.20), Fig. 5. To further illustrate the

importance of using an appropriate wake model in harmonic rotor hub load calculation,

Fig. 6 compares the results from three different wake models. The double circulation

peak model was designed for application to the case with negative tip loadings, Ref.

[19]. For this highly twisted blade (-16°), there exists a negative aerodynamic loading

around the advancing tip region under the flight conditions investigated. As shown

in Fig. 6, this double peak modeling captures the physical behavior of the wake and

improves the prediction significantly as compared to the conventional single peak model.

Fig. 6 also presents the results from linear inflow modeling of Coleman and Feingold,

Ref. [22]. This linear inflow model neglects both the higher harmonic variation and

higher order radial distribution of the induced inflow which are major excitation sources

of rotor vibration. It is obvious from the figure that the linear inflow model can provide

no accurate hub vibratory load information.

The effect of structural dynamics on harmonic hub loads is presented in Fig. 7. The

results from three modelings are shown. The basic modeling has five coupled flap-lag

modes and one elastic torsion mode (plus a rigid blade pitch motion) as discussed in

the previous section ("Analytical Rotor Modeling"). The second modeling adds one

more higher bending mode (9.15/rev); the last one adds both the higher bending and a

higher torsion mode (14.37/rev). As seen from the figure, the results show very minor

difference from adding higher structural modes. This indicates that the basic blade

structural dynamics model used in this study is sufficient.

Parametric Study of Aeroelastic Tailoring

A parametric study is performed on the GBH model rotor to investigate the effect

of rotor aeroelastic tailoring on harmonic rotor hub loads. The blade variables include
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the blade twist, the offset of both chordwisecenter-of-gravity(c.g.) and aerodynamic

center (a.c.) from the elastic axis, nonstructural massplacement,and blade bending

and torsional stiffnessdistributions.

The vibratory rotor hub loadsin a nonrotating frameareobtainedfrom the summa-

tion of the rotor hub reactionsovereachblade in the rotating frame. Basedon the sum

of harmonics,for a four-bladedrotor in a steadyperiodic response,3P and 5P in-plane

root shearsof eachrotating bladearepassedto the nonrotating frame asa 4P vibratory

longitudinal force (F_) and side force (Fu). Similarly, only 3P and 5P root moments

contribute to the 4P roll (M_) and pitch (Mu) momentsat the nonrotating frame. The

4P vertical shear F_ and yaw moment Mz result from 4P loads in the rotating frame.

Effect of Twist

It is known that blade twist is used to lower rotor power required to improve its

aerodynamic performance. This improvement is achieved by redistributing spanwise

blade load to reduce both rotor induced and profile drag. Figure 8 shows spanwise

distribution of blade sectional normal force for three differently twisted blades under

the same trim condition. The more twisted blade has a lighter loading at the tip region.

The tip loading with high twist (-12 ° and -16 °) even becomes negative. Fig. 8 presents

the blade normal loading at advancing azimuthal location (_b = 90°). Similar trends

exist for the spanwise variation of blade loadings for other rotor azimuthal locations.

The twist also increases the blade flap-lag coupling. Among all the five coupled

flap-lag modes, a significant increase in flap-lag coupling occurs with the fifth mode

which is dominated by an in-plane lead-lag motion. Increased twist adds a significant

amount of flapping motion to this mode, Fig. 9.

Although there is no change in the frequency and mode shape of the torsional mode

due to the blade twist, the blade torsional response is affected by the twist, Fig. 10. The

larger twist causes a greater blade torsional response which compensates blade pitch

control for a given trim condition.

These changes due to the twist result in an unfavorable impact of high twist on

vibratory rotor hub loads. Figure l l shows the hub loads for these different twisted
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configurations at # = 0.30. All componentsof the 4P vibratory hub loads, except the

pitch moment, increasewith the blade twist. The largest increaseoccurs in 4P vertical

shear and yaw moment. The twist effecton harmonic hub loads at low flight speed

(# = 0.10) is presented in Fig. 12, the same trend is seen.

Effect of Chordwise C.G. Offset

For prevention of classical bending-torsion flutter, it is beneficial for the chordwise

center-of-gravity (e.g.) to be forward of the elastic axis. For blade dynamic response,

the effective e.g. offset is proportional to the mass weighted bending-torsion coupling.

To examine the effect on harmonic hub loads of the chordwise e.g. offset, the e.g. is

moved 10% of the chord length forward of and aft of the elastic axis along the blade

radial stations from 0.40R to 0.50R. The former is denoted as "CG45(+)', while the

latter is "CG45(-)". These two cases correspond to the anti-node region of the third

blade flap-lag mode. As mentioned, the baseline blade has a coincidence of chordwise

center-of-gravity, aerodynamic center, and elastic axis.

The results in Figs. 13-14 show that moving the chordwise e.g. forward of the

elastic axis results in lower vibratory loads than that of placing the e.g. aft of the

elastic axis. This is due to the flap-torsion inertial coupling effect that causes a phase

change in blade torsional response shown in Figs. 15-16. The torsional response for the

e.g. forward of the elastic axis oscillates out-of-phase with the case when the e.g. is aft

of the elastic axis. This explains why the e.g. movement across the elastic axis affects

the harmonic hub loads differently. A chordwise e.g. located forward of the elastic axis

has an advantage for lower vibratory hub loads.

A chordwise e.g. offset movement has also been investigated at blade stations from

0.6R to 0.7R which are related to the anti-node region of the 4th coupled flap-lag mode.

A similar trend exists with only a minor difference in the in-plane shears as compared

to the previous cases.

Effect of Aerodynamic Center Offset

The offset of aerodynamic center (a.c.) from the elastic axis could be, in fact,
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realized by adjusting chordwise location of the blade section twist center. The influence

of aerodynamic center movement on harmonic hub loads is caused by a change in blade

torsional response due to sectional aerodynamic pitching moment. For this study, the

aerodynamic center at 0.6R to 0.7R blade stations are moved 10% of the chord length

forward (denoted as "AC67(+)") or after (denoted as "AC67(-)") the elastic axis to

examine the effect on harmonic hub loads.

Figures 17-18 compare the harmonic hub loads for these two modifications with

the baseline configuration. The aerodynamic center located after the elastic axis is,

in general, beneficial to vibratory loads reduction for both high (# = 0.3) and low

(# = 0.10) forward flight speed. There are exceptions for longitudinal force (F_) and

rolling moment (mx) at # = 0.3 and pitching moment (Mu) at /_ = 0.10. Unlike the

effect of chordwise c.g. offset, the aerodynamic center offset mainly changes the mean

of the blade torsional response and not the phase shift as shown in Figs. 19-20.

Effect of Addition of Mass

Mass tuning is another way to reduce rotor vibration. Adding nonstructural masses

alters both blade natural frequencies and mode shapes, and thus affects the blade dy-

namic response.

In this investigation, the effect of masses added at three different blade spanwise

locations are examined and compared to experimentally measured data from Ref. [12].

For comparison, the same amount of concentrated mass as in the experiment is placed

at 0.30R, 0.50R, and 0.85R radial locations, respectively. For identification, these

configurations with added mass are denoted as "M30", "M50", and "M85" accordingly.

The mass weighs 0.00838 slug and represents 8.7% of total blade mass. Table 2 shows

the influence of the added mass on natural frequencies of coupled flap-lag modes. There

is no effect of the added mass on the torsion modes.

It is noted that mass added at 0.30R lowers the natural frequencies of all three

elastic modes (3rd to 5th modes). This is due to the fact that the mass added in-

board increases the modal mass. This added mass has little effect on the first two
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Table 2: Variation of blade frequencies with added mass

Modes [[ 1st I 2nd ] 3rd ] 4th ] 5th [[

Baseline 0.312 1.045 2.890 5.439 6.695

M30 0.315 1.045 2.778 5.186 6.354

M50 0.314 1.046 2.778 5.467 6.419

M85 0.256 1.030 2.944 5.512 6.297

rigid blade modes. The mass placed at 0.50R has a similar effect except for the 4th

mode frequency. The mass placed at 0.85R, however, increases the 3rd and 4th mode

frequencies because of dominant centrifugal stiffening effect outboard and decreases the

first lag mode frequency due to the increased modal mass.

The blade elastic mode shapes are strongly affected by the addition of masses. The

changes of mode shapes directly alter the modal generalized forces. Figure 21 presents

the generalized force variation for the third flap-lag mode. Both "M30" and "M50" con-

figurations have a smaller magnitude of the forcing function than the baseline, whereas

"M85" configuration stays nearly the same mean magnitude. From a harmonic analy-

sis, it is found that "M30" and "M50" modifications create a phase shift in the third

harmonic component of the generalized force. The effect of these additional masses

on the generalized force of the fourth mode is shown in Fig. 22. Also based on the

results from a harmonic analysis, the "M85" modification causes a smaller amplitude

of the third harmonic, a phase shift in the fourth harmonic of the generalized force

and a much smaller mean magnitude also. The "M30" lowers the mean magnitude of

the generalized force. The effects of the "M50" is not significant on this mode. The

fifth mode is a strongly coupled flap-lag motion. The "M30" modification decreases the

mean magnitude of the generalized force related to its flapping component and causes

a phase shift in its fifth harmonic, Fig. 23. The magnitude of the forcing function

associated with the lag motion component of the fifth mode is decreased by the "M30"

modification, Fig. 24. The "M50" has a similar effect as the "M30" on the fifth mode

except there is no large phase shift. The "M85" configuration mainly affects the phase
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Table 3: Variation of blade frequencies with flapwise stiffness

Modes II 1st I 2nd I 3rd I 4th ]5th IJ

Baseline 0.312 1.045 2.890 5.439 6.695

EIzz(+) 0.312 1.045 2.913 5.455 6.696

Elzz(-) 0.312 1.045 2.863 5.418 6.693

of 4th and 5th harmonic of the generalized force for the lag motion of the fifth mode.

It also increases the mean magnitude of the flap component of the generalized force.

Figures 25-26 show the impact of mass tuning on 4P hub loads. Among three

different mass placements, the mass placed at 0.50R reduces all six components of

harmonic hub loads simultaneously at # = 0.30. It has the same effect at _t = 0.10

except for the pitching moment (Mr). The mass placed at 0.85R reduces the 4P shears,

but increases the roll and pitch moments significantly. The effect of adding mass at

0.3R results in a slight increase of most vibratory load components at Ft = 0.30, but

reduces vibratory loads at # = 0.10. The experimental data available for validation are

the 4P vertical shear measurement. These wind tunnel measured data are presented in

Fig. 27. The trend of mass tuning effect agrees well with the analytical prediction.

Effect of Flapwise Bending Stiffness

Within the limit of satisfying blade strength requirements, a low harmonic hub load

may also be obtained through an appropriate blade stiffness distribution. Two cases are

tested to investigate the effect on harmonic hub loads of blade flapwise bending stiffness.

The blade flapwise bending stiffness is varied for +20% at OAR to 0.6R locations which

correspond to maximum flapwise bending curvature of the third mode. These two cases

are denoted as "EIzz(+)" and "EIzz(-)" respectively.

The results show very minor change of blade natural frequencies, Table 3. Both

blade natural frequencies and mode shapes are not as sensitive to the flapwise stiffness

perturbation as for the cases of mass tuning. The same amount of change in flapwise

bending stiffness at 0.7R to 0.8R locations, where the maximum bending curvature of
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the 4th mode is located, is also investigated. Only minor change in blade dynamic

characteristics occurs. This may be due to the fact that centrifugal stiffness affects

blade bending behavior more than the flapwise stiffness.

There are, however, aeroelastic coupling effect due to the flapwise bending stiffness

perturbation. This can be seen in Fig. 28. For the case of # = 0.30, lowering the

stiffness alters the flapwise component of generalized force of the third mode. This

results in an increase of 4P hub side force (F_) and rolling moment (Mx), Fig. 29. For

the low flight speed case (# = 0.10), both increase or decrease of the bending stiffness

influence the generalized force, Fig. 30. The changes, however, mainly occur at first

quadrant of the rotor disk which implies a coupling with the rotor wake effect. This

results in a 4P shear reduction from lowering the bending stiffness, Fig. 31. Also, Fz

and Ms are both reduced from an increase or decrease of the bending stiffness.

Effect of Chordwise Bending Stiffness

The chordwise bending stiffness along OAR to 0.6R radial stations is changed by

+20% to investigate its effect on harmonic hub loads, denoted as "EIxx(+)" and "EIxx(-

)", respectively. The 0.4R to 0.6R locations correspond to maximum chordwise bending

curvature of the fifth mode and maximum flapwise bending curvature of the third mode

also.

For # = 0.30, there is no remarkable change in harmonic rotor hub loads from this

chordwise bending stiffness modification. It does, however, show the reduction trend of

in-plane shears (Fx and Fy) and yaw moment (Ms) from lowering chordwise bending

stiffness, Fig. 32. The trend is, however, different for # = 0.10, Fig. 33. This is

explained by the coupling with the wake effect as indicated in Fig. 34. The figure

shows a change of the generalized force of the third bending mode in the first quadrant

of the rotor disk. This change only exists with the low speed case (# = 0.10), where

the wake effect is significant. For the high speed case (# = 0.30), there is not this type

of change from the perturbation of the chordwise bending stiffness.
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Effect of Torsion Stiffness Variation

The torsional stiffness from 0.3R to 0.8R radial stations is increased or decreased by

20% to investigate its influence on vibratory hub loads. These two cases are denoted as

"GJ(+)" and "G J(-)", respectively.

The change of blade torsional stiffness results in a shift of the natural frequency of the

first blade elastic torsional mode. Increasing torsional stiffness raises the frequency from

4.924/rev to 5.208/rev, whereas decreasing the torsional stiffness lowers the frequency to

4.759/rev. Their effect on harmonic hub loads are different, Figs. 35-36. For this model

rotor, decreasing torsional stiffness is beneficial to the reduction of harmonic shears and

rolling moment, but not the pitching moment at low speed. Increasing torsional stiffness

increases shear and rolling moment at higher speed.

Conclusions

A parametric study of vibratory rotor hub loads has been performed on an aero-

dynamically advanced model rotor which has a various airfoil distribution and a high

blade twist. The following conclusions can be made from this investigation.

1. A higher blade twist results in a higher rotor vibration.

2. Altering the torsional response is effective for vibration reduction.

3. Accepting a weight penalty, mass tuning is also effective.

4. Bending stiffness modification for vibration reduction is less effective.

5. It seems there is no single method to reduce all six components of vibratory hub

loads simultaneously by a significant amount. Different design variables (both

aerodynamic and structural dynamic parameters) need to be appropriately com-

bined to achieve overall vibration reduction.

14



References

1. Flannelly, W.G.,"The Dynamic Anti-resonant Vibration Isolator," Proceedings of

the 22nd Annual National Forum of the American Helicopter Society, Washington,

D.C., May 1966.

2. Hamouda, N.H., and Pierce, G.A.,"Helicopter Vibration suppression Using Sim-

ple Pendulum Absorbers on the Rotor Blade," American Helicopter Society North-

east Region National Specialists' Meeting on Helicopter Vibration, Hartford, Con-

necticut, Nov. 1981.

3. McHugh, F.J. and Shaw, J., Jr., "Helicopter Vibration Reduction with Higher

Harmonic Blade Pitch," Proceedings of the Third European Rotorcraft and Powered-

Lift Aircraft Forum, Paper No. 22, Sept., 1977.

4. Wood, E.R., Powers, R.W., Cline, J.H. and Hammond, C.E.,"On Developing

and Flight Testing a Higher Harmonic control System," Journal of the American

Helicopter Society, Vol. 22, No.l, Jan. 1985.

5. Friedmann, P. P. and Shanthakumaran, P., "Optimum Design of Rotor Blades for

Vibration Reduction," Journal of the American Helicopter Society, Vol. 29(4),

Oct. 1984, pp. 70-80.

6. Yen, J.G.,"Coupled Aeroelastic Hub Loads Reduction," AHS/NAI International

Seminar, Nanjing, China, Nov. 1985.

7. Peters, D. A., Rossow, M. P., Korn, A., and Ko, T., "Design of Helicopter Rotor

Blades for Optimum Dynamic Characteristics," Computers and Mathematics with

Applications, Vol. 12(1), 1986, pp. 85-109.

8. Weller, W. H. and David, M. W., "Experimental Verification of Helicopter Blade

Design Optimization for Minimum Vibration, Proceedings of the 44th Annual

National Forum of the American Helicopter Society, Washington, D.C., June 1988.

15



9. Lim, J. W. and Chopra, I., "Aeroelastic Optimization of a Helicopter Rotor,"

Journal of the American Helicopter Society, Vol. 34(1), Jan. 1989, pp. 52-62.

10. Pritchard, J. and Adelman, H., "Optimal Placement of Tuning Masses for Vibra-

tion Reduction in Helicopter Rotor Blades," AIAA Journal, Vol. 28, No. 2, Feb.

1990, pp. 309-315.

11. Chattopadhyay, A. and Chiu, Y. D., "An Enhanced Integrated Aerodynamic

Load/Dynamic Approach to Optimum Rotor Blade Design," Proceedings of the

46th Annual Forum of American Helicopter Society, Washington D.C., June 1990,

pp. 459-468.

12. Matthew L. Wilbur, "Experimental Investigation of Helicopter Vibration Reduc-

tion Using Rotor Blade Aeroelastic Tailoring," Proceedings of the 47th Annual

Forum of the American Helicopter Society, Phoenix, Arizona, May 1991.

13. D.K. Young and F.J. Tarzanin Jr., "Structural Optimization and Mach Scale Test

Validation," Proceedings of the 47th Annual Forum of the American Helicopter

Society, Phoenix, Arizona, May 1991.

14. Callahan, C.B. and Straub, F.K.,"Design Optimization of Rotor Blades for Im-

proved Performance and Vibration," Proceedings of the 47th Annual forum of

American Helicopter Society, Phoenix, Arizona, May 1991.

15. He, Chengjian and Peters, D.A., "Optimum Rotor Interdisciplinary Design with

a Finite State Aeroelastic System," Computer and Mathematics with Application,

Vol. 17a No.l, 1993.

16. Blackwell, R.H.,"Blade Design for Reduced Helicopter Vibration," American He-

licopter Society National Specialists' Meeting on Helicopter Vibration, Hartford,

Connecticut, Nov 1981.

17. Gupta, B.P.,"Blade Design Parameters which Affect Helicopter Vibrations," Pro-

ceedings of the 40th Annual Forum of American Helicopter Society, Arlington,

16



Virginia, May 1984.

18. Heffernen, G.K., Yamauchi, M. Gaubert and W. Johnson, " Hub Loads Analysis

of the SA349/2 Helicopter," Journal of the American Helicopter Society, Vol. 35,

No. 1, January 1990.

19. Johnson, Wayne, "A Comprehensive Analytical Model of Rotorcraft Aerodynam-

ics and Dynamics," Johnson Aeronautics Version, Vol I: Theory Manual, Johnson

Aeronautics, Palo Alto, California, 1988.

20. Noonan, K.W., "Aerodynamic Characteristics of Two Rotorcraft Airfoils Designed

for Application to the Inboard Region of a Main Rotor Blade," NASA TP-3009,

AVSCOM TR-90-B-005, July 1990.

21. Bingham, G. J. and Noonan, K.W.,"Two-Dimensional Aerodynamic Character-

istics of Three Rotorcraft Airfoils at Mach Numbers from 0.35 to 0.90," NASA

TP-2000, AVRADCOM TR-82-B-2, May 1982.

22. Coleman, Robert P., Feingold, Arnold M., and Stempin, Carl W.," Evaluation of

the Induced-Velocity Field of an Idealized Helicopter Rotor," NACA ARR L5E10,

June 1945.

17



Flapping
RC(4)-10airfoil

46385

52.007

56224

BlendBlend

R_3); 1_ I RC(3)-08

__._ .... airfoil

49.196

54.818 "

Centerof rotation

Figure 1 Blade Configuration (m inches)

18



6O

5O

A
¢0

=. 40
¢l
m

Kt)
m

8 3o

n
2O

10

0
0.050

---0"--" Data

Presc ribed Wake

Q
", ,(D

% •

• I

•%%•

i 1 " T ! • 1 '

0.100

i ! I T T I I . 1 i 1 t l ' T ' 1 I

0.150 0_00 0_50 0.300

Advance Ratio

Figure 2 Comparison of theoretical 4P vertical shear

with measured data.

19



A

to
..n
m

&

C
O
E
O

O

n.
,,q,

60

50

40

30

2O

lO
0.050

---O'--. Data

Prescribed Wake

G "Qo,o

' ' ' I r a i i i t i I T w ,T n I i I f i i , ' t T

0.100 0.150 0.200 0.250 0.300

Advance Ratio

Figure 3 Comparison of theoretical 4P roll moment
with measured data.

2O



.=

C
4)
E
0
=E

.9.o
m

0..

O.

6O

5O

4O

3O

2O

10
0.050

---E_)---" Data

Presc dbed Wake

%
• s

, , , , I , T a I I I w I I f I i i I T i i I i 1 I

0.100 0.150 0.200 0.250 0.300

Advance Ratio

Figure 4 Comparison of theoretical 4P pitch moment
with measured data.

21



60

50

(n

30
O

a.

20

10

---C)'--" Data

Prescribed Wake

Free Wake

G

• I

• I

• I

•_ _ ..... ...._.

0 1 n i I r i v i n t i l a i t I _ n i T i i J I f I
0.050 0.100 0.150 0.200 0.250 0.300

Advance Ratio

Figure 5 Comparison of prescribed wake and free
wake predictions

22



5O

4O

.=
•- 30
¢=

i

_B 2o

lO

-10
0.050

Data

Q Dual- Peaks 0

One-Peak ,_

, '_ .............. Coleman

, , , , I i T i t f I i i r * i T I I 1 r i I i I I
0.100 0.150 0.200 0.250 0.300

Advance Ratio

Figure 6 Comparison of different inflow modelings

23



D 5 Bendings, 1 Torsion

[] 6 Bendings, 1 Torsion

A

30

==

_ 0

Fx Fy

k_ 6 Bendings, 2 Torsions

Fz Mx My Mz

Figure 7 Comparison of blade structural dynamics

modeling (p=0.30).

24



m

O
It.
m

E
O

5O

25

0.00
I I I

Twist=- 8.0 (deg)

Twsit =-12.0 (deg)

Twist =-16.0 (deg)

l I , , I , 1 I , , , f T , , I f
0.25 0.50 0.75 1.00

r

Figure 8 Spanwise variation of sectional normal

force, 14=0.30, N/--90.Odeg.

25



0.40 --

Twist ---8.0 (deg)

0.30 - ........ Twist =-12.0 (deg)

i 0.10
o°°

o. r \,',\

"0.10 I- _. "

-0.20 I , , , , f t I v , T I I , , Y , i I i I

0.00 0_5 0.50 0.75 1.00
r

Figure 9 Flapwise deflection of fifth bending mode

26



4.o _ Twsit =- 8.0 (deg)

| Twist =-12.0 (deg)

__ 3.0

_ 2.0

i""5
%°%

*% ,=e°
o_ _°

"_O_O_o _o_°

0.0

-1.0
0 50 100 150 200 250 300 350

Azimuth (deg)

Figure 10 Effect of twist on torsional response

27



A

30

' _ -16.0 (deg,)
V

[] -12.0 (deg)

[] -8.0 (deg)

e_

V

!

Fx Fy Fz Mx My Mz

Hgure 11 Effect of t_st on harmonic hub loads (_=0.30)

28



A

A

N
V

0

5

0

Fx Fy Fz Mx My Mz

-16.0 (deg)

I_ -12.0 (deg)

[] -8.0 (deg)

Figure 12 Effect of twist on harmonic hub loads (_---0.10)

29



_3°I.
20-

10-

o
Fx

Z:

!ii!l e
1 | !

Fy Fz Mx My Mz

D

I

[]

Baseline

CG45(+)

CG45(-)

Figure 13 Effect of c.g. offset on harmonic hub loads (_=0.30)

30



m
I

m

_t

k,d
O

2O

10-

5

0
Fx

I I i

Fy Fz Mx My Mz

D

[]

B

Baseline

CG4S(+)

CG4S(-)

Figure 14 Effect of c.g. offset on harmonic hub loads (_---0.10)

31



A
c_
@

"U

Z
0
a.

Q

m

o

o

0

4.0

3.0

2.0

1.0

0.0
0

Baseline

CG45(+)

CG45(-)

i i f I f I I i 1 _ I I I I I .... ! .... I .... | .... I ,

50 100 150 200 250 300 350

Azimuth (deg)

Figm'e 15 Effect of c.g. oHset on torsional response (_=0.30)

32



4.0 --

A

Baseline
_. CG45( + )

3.0 ............ CG4S( - )

L'.,.
"\. ,, ..... • i,..,-'/_

• _. j- ",_o •
• o ,s ° ° •

m

P
o
I- 1.0

0.0
0

• .s

% =,9

I''' I'' T I ! .... ! .... f .... I' i I I _ I T T i _ I

S0 100 150 200 250 300 350

Azimuth (deg)

Figure 16 Effect of c.g. offset on torsional response (_=0.10)

33



,._ 3O
•-r D

20 []

Fx Fy Fz Mx My Mz

Baseline

AC67(+)

AC67(-)

Figure 17 Effect of a.c. offset on harmonic hub loads (_---0.30)

34



QrJ

20

| I

D

[]

[]

Fx Fy Fz Mx My Mz

Baseline

AC67(+)

AC67(-)

Figure 18 Effect of a.c. offset on harmonic hub loads (_--0.10)

35



'S
"D

I¢
O

co
m

O
"D
O

¢=
O

m

O
I--

4.0

3.0

2.0

1.0

0.0

-1.0
0

Baseline

AC67(+)

............. AC67(-)

.... ! .... ! .... I .... ! .... ! .... ! .... ! ,

50 100 150 200 250 300 350

Azimuth (deg)

Figure 19 Effect of a.c. offset on torsional response _--0.30)

36



4.0 - Baseline

....... ACS7(+)

AC671 -)

3.0

g
=
rr

2.0

o
o=
"_ 1.0
o

I-

0.0

.... ! t I a I f i i i , | t , , , | .... t , , , f I I I I I _ I

50 100 150 200 250 300 350

Azimuth (dog)

Figure 20 F_.ffect of a.c. offset on torsional response (i_=0.10)

37



2o I- Base line
M30

[ ............. MSO
lO !- ...... M85 .o...=._

r .";Y"!" \_="_,"-"_',

|_ •

"_m v,,. _. ....st7

t \\. ,,A'_: _'_Z
-10 _. # •

-30 , , , , I, _. _ T i''' ! .... ! .... I,,, , I,,., I ,

0 50 100 150 200 250 300 350

Azimuth (deg)

Figure 21 Variation of generalized force of flapwise

component of the third mode for different

mass tuning configurations (1_---0.30)

38



0

'U
o

m

0
r-
@
0

0

-10

sI
0

Baseline

M30

............ MSO

M8S

I\

r-.., \ _ =.-_'/ """" ._'; ,..,/ ,, j:J
I :. _, /
/ '/_. "_._./ .+_

_'_+ I..._', ._'
i #,,_,

/

I

I

i T t i t I 1 .... l .... I .... ! .... ! .... I ,

50 1O0 150 200 250 300 350

Azimuth (deg)

Figure 22 Variation of gener_liTed force of flapwise

component of the fourth mode for different

mass tuning configurations (_---0.30)

39



l
0

14.

"O
@
N

E

0

2.5

0,0

-2.5

I Buellne

5.o M30

r/,,,\4/_ M50
I M85
I

_ ,'
-'- "i\ II \\ /',. /

, ."
"_Vl 2 \\ \,, _ ,/_ //

.' ',,,ii\_,...'---j--_:
\_ .__"
%_.../

0

-5.0

.... I .... I .... i , . I I I I l I i l i l I I I I i i i I I

50 100 150 200 250 300 350

Azimuth (deg)

Figure 23 Variation of generalized force of flapwise

component of the fifth mode for different

mass tuning configurations (tt---0.30)

4O



0

"0
0

u

E
0

@
0

Baseline

M30

M50

M8S

5O 100 150 200 250 300

Azimuth (deg)

35O

Figure 24 Variation of generalized force of in-plane
component of the fifth mode for different

mass tuning configurations (_--0.30)

41



,_ 4O
"T

i [_ Baseline
3O

m M3o
2o

l_ MSO

[] M85

Fx Fy Fz Mx My Mz

Figure 25 Prediction of effect of addition of mass

on harmonic hub loads (_---0.30)

49



¢,]

20
[] Baseline

i!i [] M30

ii [] M50[] M85

l l l I l

Fx Fy Fz Mx My Mz

Figure 26 Prediction of effect of addition of mass

on harmonic hub loads (_t=O. 10)

43



5O

,_ 4o-

30-

i 20-

10-

0

=0.1 !/ =0.3

1_1 Baseline

I M3o

[] MS0

[] M85

Figure 27 Measurement of effect of addition of mass

on 41" vertical shear.

44



0
I,I.

qD
@

E
@

@
0

10

0

-10

-20

-30
0

Baseline

Elzz (+)

Elzz (-)

.... I .... ! .... I .... ! , , . i _ i i i i _ i i i i I i

50 100 150 200 250 300 350

Azimu_ (deg)

Figure 28 Variation of generalized force of flapwise
component of the third mode for flapwise

bending stiffness changes (_=0.30).

45



,'_ 3O

20-

10-

0

Fx

i |

Fy

i 1

Fz Mx My Mz

[] Baseline

m EIzz(+)

[] Ezz(-)

Figure 29 Effect of flapwise bending stiffness on

harmonic hub loads (_=0.30).

46



0
II_

'U
0

E
a

o

10

0

-10

-20

-3O

Baseline

Eizz (+)
Elzz (-)

,,,, f, , , _ I _ , i , I , , i i T i i I I ! .... ! .... I ,

50 100 150 200 250 300 350

Azimuth (deg)

Figure 30 Variation of generalized force of flapwise
component of the third mode for flapwise

bending stiffness changes (11=0.10).

47



"7' 20
[] Baseline

E 15
[] FJ=(-)

!il
I t I i I

Fx Fy Fz Mx My Mz

Hgure 31 Effect of flapwise bending stiffness on

harmonic hub loads (_=0.10).

48



A
r.o

3O

i i i i

Fx Fy Fz Mx My Mz

[] Baseline

[] E_(+)

[] EIxx(-)

Figure 32 Effect of chordwise bending stiffness on

harmonic hub loads (_=0.30).

49



2O
D Baseline

=_ !_ E_cx(+)

[] EL_(-)

° 'o
Fx Fy Fz Mx My Mz

Figure 33 Effect of chordwise bending stiffness on

harmonic hub loads (_---0.10).

5O



O
It.

"O
O
N
m

E
0

0

10

0

-10

-2O

-3O
0

Baseline

El]o((+)

............ Slxx (-)

4"_ S

,." / _. i/

.... , .... t .... I i 11 , f , , i , f , i , , _ , T , , T I

50 100 150 200 250 300 350

Azimuth (deg)

Figure 34 Variationof generalizedforceof nap_se

component of the thirdmode for chord_$e

bending stiffness changes (_t--O.10).

51



3O
D Baseline

[] GJ(+)

20 I_ GJ(-)

!
-_ to

_ o
Fx Fy Fz Mx My Mz

H_lre 35 Effect of torsional stiffness on harmonic hub

loads (p=0.30).

52



|

Fx Fy Fz Mx My

p,.

Mz

[] Baseline

I_ G J(+)

B GJ(-)

Hgure 36 Effect of torsional stiffness on harmonic hub

loads (_=0.10).

53







J FormARoro_edREPORT DOCUMENTATION PAGE OMB No. 07040188

Pt_lio repmtin0 I_xden for thie oo#eOIk_ ol i_'ormatk_ b mtin_ted to average 1 h(x)r per mopon_, induding the timo for re_zwk_ k_lruc_orm, uetcll_ 8 icz;,,_ng d4Zlae_,roes,

giShodng m_l maJntaJnlngtho data neod4d, and oompk_n0 lind Nwiow_ the oo_eotion of _. $4m¢1oomrnm_ milardmg thbl bur¢km eeliml_; m"Imy other _ ci thin
o_im]ljon d Id¢m_tkm. inoludlngsuggNtlon4 for r_ th_ bunJen, to Wa_dr_ I'_uamm_ Sen_ee. D_ _ _ _ _ _. 1215 _ _

Hightl_.lkdio 1204. Adngton. VA 22202.4302. and totheOffioeoi Mar,a0emm_ w¢l Buc_.Pa_ ReduodonPmjed (0704-0188).Wuhlngton. _ 20603.

1. AGENCY USE ONLY (Leave b/_#J 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1993 Contractor Report

4. TITLE AND SUBTITLE

A Parametric Study of Harmonic Rotor Hub Loads

L AUTHOR(S)

ChengJlan He

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(B)
Lockheed Engineering & Sciences Co.
144 Research Drive

Hampton, VA 23666

L SPONSORING I MONITORING AGENCY NAME(S) AND ADORESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

S. FUNDING NUMBERS

C NAS1-19000
WU 505-63-36

L PERFORMINGORGANIZATION
REPORTNUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-4558

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Jaroslaw Sobieski

12L DISTRIBUTIONI AVAILABILITYSTATEMENT

Unclassified - Unlimited

Subject Category 05

12b. DISTRIBUTION CODE

13. ASSl"RACT(Maxknum200 woeds)

This report presents a parametric study of vibratory rotor hub loads in a nonrotsting system. The study is based on a
CAMRADIJA model constructed for the GBH (Growth Version of Blackhawk Helicopter) Mach-scaled wind tunnel rotor

model with high blade twist (-16°). The theoretical hub load predictions are validated by correlation with available measured
data. Effects of various blade aeroalastic design changes on the harmonic nonrotating frame hub loads at both low and high

forward flight speeds are investigated. The study aims to illustrate some of the physical mechanisms tor change in the
harmonic rotor hub loads due to blade design variations.

14. SUBJECT TERMS

Blade Dynamics
Rotor Aerodynamics

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

Rotor Aeroolatic Response

1L SECURITY CLASSIFICATION

OF THIS PAGE

Undassified

is. SECURITYCLASSIFiCATiON
OF ABSTRACT

Unclassified

l& NUMBER OF PAGES

64

18. PRICE CODE

A04
20. UMITATiON OF ABSTRACT

Unlimited

SIimdiu'd Form 290 (Rev. 2-89)
Prwmbed by ANSi 8_d. Z30-18
296-102


